

Wearable Device for Detection of Over **Exposure to UV Radiation And Polluted Air**

Jieneng Yang and Ruihong Wang, Electrical Engineering **Professor Andrei M. Shkel, Department of Electrical Engineering and Computer Science**

Motivation

- Ultraviolet radiation is the primary cause of skin cancer.
- Air pollution impairs people's respiratory system.
- People staying outdoors exposed to direct UV and air pollution without knowing it.
- All products which can detect the UV and air pollution in market are not good enough or are too large to be wearable.

Therefore, a wearable device which can detect UV and air pollution then give the alerts to users is in need.

Objective

Develop a wearable devices that:

- Detect the exposure to the Ultraviolet and polluted air of the people who wear this device;
- Alert when exposed to dangerous amount of UV or air pollution;
- Transmit data collected to smartphones or PCs where data can be organized and analyzed.

•Contact team members: ruihongw@uci.edu, jienengy@uci.edu •Link for more information

- Hardware includes sensors circuit design, programming on microcontrollers and wireless communication.
- Mathematic modeling includes doing research on human's tolerance to UV and air pollution and building a model to analyze data for alarm.
- Software design is mainly about developing a software interface on phones, PC or Cloud platform for data analysis and display.

•http://www.ucimaeprojects.com/projects/2016-2017-sensor-based-solutions-to-real-world-problems/

Method

The project workload can be divided into hardware design, mathematical modeling and software design.

B	Exposia v0.2
5	• 1000
7h 6h 40	16 lw lm
1010/11/11	

Conclusion

- Designed and built 3 different wearable prototypes, including 1 BLE version and 2 Wi-Fi versions;
- Developed 2 iOS Apps that work with the prototypes;
- Established 1 web-based Data Dashboard that works with the Wi-Fi prototypes.

• Built and implemented the Mathematic Models of UV Damage Dose and Air pollution Damage Dose; In comparison, The Wi-Fi prototype sacrificed its mobility in exchange of stable Internet interface, communication of IoT Cloud and stronger ability of computation. The BLE version, has better mobility without Internet interface.

Future Work

- Update the Applications Regularly.
- Design a Universal Package.
- Build an Internet Analysis Interface of the BLE Prototype

Reference

1. G. R. Kingsy, R. Manimegalai, D. M. S. Geetha, S. Rajathi, K. Usha and B. N. Raabiathul, "Air pollution analysis using enhanced K-Means clustering algorithm for real time sensor data," 2016

2. J. Howell, A. Nag, M. McKnight, S. Narsipur and O. Adelegan, "A low-power wearable substance monitoring device," 2015 3. CliMate -

https://www.kickstarter.com/projects/962920513/clima te-create-your-own-friendly-environment/ 4.UV Information - <u>http://www.uv-</u> damage.org/en/article/UV-Good-to-know/a3.aspx

Acknowledgement:

This research was funded by UROP UCI. We thank our mentor Prof. Shkel and Dr. Terry Wang from MAE Department who provided insight that greatly assisted the design.