HIGH HEAT FLUX TESTBED **UCI MECHANICAL ENGINEERING STUDENTS** ADVISORS: KHALID RAFIQUE, MICHAEL WILSON

Background

The internal components of jets and rockets can reach very high temperatures, posing a threat to the integrity of the electronics inside of them. Our goal is to design a rod that will be able to dissipate enough heat to keep one section of the rod at room temperature, given one side being very hot, and another side very cold.

Goal and Objective

The goal is to design and build a testbed capable of generating and dissipating high heat fluxes

The objective is to create heat flux as high as 500W/cm² by supplying heat from one side of the testbed and dissipated heat rapidly by using SOTA cooling technologies.

Requirements

#	AFRL Requiremen ts	UCI Design Compliance	UCI As Built Test 2015 - 2016	Projected for Fall 2016 - 2017
1	Vacuum Compatibility	Yes	None	Not required
2	Thermal Source	Yes	Cartridge Heater (14 Ohm)	Same
3	Thermal Sink	Yes	AFRL Refrigerated bath + Cold plate \rightarrow Lowest temp = 4C, using water as coolant	Use same equiment but explore different coolant to obtain lower cooling temperature
4	Max heat load of 500 – 2000W	Targeted for 100W	Not achieved – due to limitation of power supply → Max power 60W	Look into increase power as much as possible → Targeted for 100W or more
5	Max heat flux 500 – 2000 W/ cm ²	Targeted for 50 – 100 W/cm²	Up to ~60 W/cm ²	Targeted for 100W/ cm ² or more
4	Safety System with shutdown power feature	Safety shutoff controlled by electronics	Not achieved	Shutoff system by using relay switch and arduino

$$= -\mathbf{k} \frac{T_{l}}{d}$$

Current Status

- 1. Be able to produce high heat to the rod without damaging thermocouple bonding
- 1. Designed safety shut-off and demonstrate that the safety shut-off features works repeatedly and reliably.

Next Step

- 1. Redesign the cooling system with new cold plate and fluid coolant \rightarrow Research on SOTA cooling system.
- 2. Fabricate new heating rod for better heat transfer and thermocouple bonding.
- 3. Use high capacity power supply to supply heat to the rod.

Budget and Team Structure

Team Lead Control CAD/ ANSYS Power/ Testing CAD Fabrication

Victoria Tien (vtien1@uci.edu) Bao Tran (tranbt2@uci.edu) David Baltazar (baltazad@uci.edu) Matthew B. Hastings Angel G. Ravelo Lisheng Wang

Project Website:

http://www.ucimaeprojects.com/projects/2016-2017-afrlhigh-heat-flux-test-bed/